23.4 C
New York

A cation-exchange strategy to tunable magnetic intercalation superlattices – Nature

Published:


  • Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, H. A window on the way forward for spintronics. Nat. Mater. 9, 952–954 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Csontos, M. et al. Strain-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, H. et al. Excessive-temperature quantum anomalous Corridor regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yi, D. et al. Emergent electrical area management of section transformation in oxide superlattices. Nat. Commun. 11, 902 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Molecule-confined engineering towards superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husremović, S. et al. Arduous ferromagnetism right down to the thinnest restrict of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition steel dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. Excessive yield exfoliation of two-dimensional chalcogenides utilizing sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koski, Ok. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. et al. Spatially managed doping of two-dimensional SnS2 by means of intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, H. et al. Precision management of amphoteric doping in CuxBi2Se3 nanoplates. Summary. Chem. 2, 421–427 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Z. et al. An efficient methodology for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Answer-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Revisiting the structural evolution of MoS2 throughout alkali steel (Li, Na, and Ok) intercalation. ACS Appl. Power Mater. 4, 14180–14190 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T section MoS2 nanosheets as supercapacitor electrode supplies. Nat. Nanotechnol. 10, 313–318 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural section transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochim. Acta 331, 135284 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, L. et al. Investigation of CoS2-based skinny movies as mannequin catalysts for the oxygen discount response. J. Catal. 258, 235–242 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kappera, R. et al. Section-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Flory, M. A., McLamarrah, S. Ok. & Ziurys, L. M. Excessive-resolution spectroscopy of CoS (X4Δi): inspecting 3d transition-metal sulfide bonds. J. Chem. Phys. 123, 164312 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Z. X. et al. The construction of the CoS2 (100)-(1×1) floor. J. Condens. Matter Phys. 19, 156223 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Luo, Y. et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlapp, R. & Penney, W. G. Affect of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, particularly Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Greaney, M., Huan, G., Ramanujachary, Ok. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo2SxSe2−x (0 ≤ x ≤ 2.0) with the ThCr2Si2 sort construction. Stable State Commun. 79, 803–810 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Griffith, J. S. & Orgel, L. E. Ligand-field idea. Q. Rev. Chem. Soc. 11, 381–393 (1957).

    Article 
    CAS 

    Google Scholar
     

  • Deng, W. et al. Establishing matched sub-nanometric cobalt clusters with a number of oxidation and metallic states for environment friendly propane dehydrogenation. Commun. Mater. 5, 215 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ko, Ok. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ruderman, M. A. & Kittel, C. Oblique change coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yosida, Ok. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Priour, D. J. & Das Sarma, S. Section diagram of the disordered RKKY mannequin in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lei, S. et al. Excessive mobility in a van der Waals layered antiferromagnetic steel. Sci. Adv. 6, eaay6407 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mugiraneza, S. & Hallas, A. M. Tutorial: a newbie’s information to decoding magnetic susceptibility knowledge with the Curie-Weiss legislation. Commun. Phys. 5, 95 (2022).

    Article 

    Google Scholar
     

  • Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. Ok. Construction and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism within the d-band steel ZrZn2. Nature 412, 58–61 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shermadini, Z. et al. Coexistence of magnetism and superconductivity within the iron-based compound Cs0.8(FeSe0.98)2. Phys. Rev. Lett. 106, 117602 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS2, WSe2, WTe2) adorned with TiO2 nanoplatelets with enhanced electron switch exercise for biosensing functions. ACS Appl. Nano Mater. 1, 7006–7015 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J., Zhou. J. & Duan, X. Replication knowledge for: A cation-exchange strategy to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).



  • Supply hyperlink

    Related articles

    Recent articles

    EuroAsia Times