Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004).
Ohno, H. A window on the way forward for spintronics. Nat. Mater. 9, 952–954 (2010).
Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
Csontos, M. et al. Strain-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005).
Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).
Deng, H. et al. Excessive-temperature quantum anomalous Corridor regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).
Yi, D. et al. Emergent electrical area management of section transformation in oxide superlattices. Nat. Commun. 11, 902 (2020).
Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020).
Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).
Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024).
Li, Z. et al. Molecule-confined engineering towards superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).
Husremović, S. et al. Arduous ferromagnetism right down to the thinnest restrict of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition steel dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).
Zheng, J. et al. Excessive yield exfoliation of two-dimensional chalcogenides utilizing sodium naphthalenide. Nat. Commun. 5, 2995 (2014).
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).
Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).
Koski, Ok. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).
Gong, Y. et al. Spatially managed doping of two-dimensional SnS2 by means of intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).
Ren, H. et al. Precision management of amphoteric doping in CuxBi2Se3 nanoplates. Summary. Chem. 2, 421–427 (2024).
Zeng, Z. et al. An efficient methodology for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).
Lin, Z. et al. Answer-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).
He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).
Wang, G. et al. Revisiting the structural evolution of MoS2 throughout alkali steel (Li, Na, and Ok) intercalation. ACS Appl. Power Mater. 4, 14180–14190 (2021).
Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T section MoS2 nanosheets as supercapacitor electrode supplies. Nat. Nanotechnol. 10, 313–318 (2015).
Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural section transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).
Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).
Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochim. Acta 331, 135284 (2020).
Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
Zhu, L. et al. Investigation of CoS2-based skinny movies as mannequin catalysts for the oxygen discount response. J. Catal. 258, 235–242 (2008).
Kappera, R. et al. Section-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
Flory, M. A., McLamarrah, S. Ok. & Ziurys, L. M. Excessive-resolution spectroscopy of CoS (X4Δi): inspecting 3d transition-metal sulfide bonds. J. Chem. Phys. 123, 164312 (2005).
Yu, Z. X. et al. The construction of the CoS2 (100)-(1×1) floor. J. Condens. Matter Phys. 19, 156223 (2007).
Luo, Y. et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018).
Schlapp, R. & Penney, W. G. Affect of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, particularly Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).
Greaney, M., Huan, G., Ramanujachary, Ok. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo2SxSe2−x (0 ≤ x ≤ 2.0) with the ThCr2Si2 sort construction. Stable State Commun. 79, 803–810 (1991).
Griffith, J. S. & Orgel, L. E. Ligand-field idea. Q. Rev. Chem. Soc. 11, 381–393 (1957).
Deng, W. et al. Establishing matched sub-nanometric cobalt clusters with a number of oxidation and metallic states for environment friendly propane dehydrogenation. Commun. Mater. 5, 215 (2024).
Ko, Ok. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).
Ruderman, M. A. & Kittel, C. Oblique change coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).
Yosida, Ok. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).
Priour, D. J. & Das Sarma, S. Section diagram of the disordered RKKY mannequin in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006).
Lei, S. et al. Excessive mobility in a van der Waals layered antiferromagnetic steel. Sci. Adv. 6, eaay6407 (2020).
Mugiraneza, S. & Hallas, A. M. Tutorial: a newbie’s information to decoding magnetic susceptibility knowledge with the Curie-Weiss legislation. Commun. Phys. 5, 95 (2022).
Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. Ok. Construction and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).
Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism within the d-band steel ZrZn2. Nature 412, 58–61 (2001).
Shermadini, Z. et al. Coexistence of magnetism and superconductivity within the iron-based compound Cs0.8(FeSe0.98)2. Phys. Rev. Lett. 106, 117602 (2011).
Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS2, WSe2, WTe2) adorned with TiO2 nanoplatelets with enhanced electron switch exercise for biosensing functions. ACS Appl. Nano Mater. 1, 7006–7015 (2018).
Zhou, J., Zhou. J. & Duan, X. Replication knowledge for: A cation-exchange strategy to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).